The power of Facebook Pixel – Implementation via Google Tag Manager

The Importance of Facebook Pixel

Imagine this offline scenario – You own an apparel store which sells clothing for men and women. Every day, you meet and greet your customers and you even know some of them well. But one morning, instead of your regular human visitors, some black figures visit your store to shop. And now that happens everyday, all day long. No human customers anymore. Just those black figures, which you can’t even distinguish in terms of appearance, gender, age, or any physical feature, because they are all alike, all black.  Lol wtf right?

All of them are having fun at your store, loving your products, trying stuff, shopping and then leaving. At any day, you won’t even know if they are new ones or if they had visited earlier.

How then, would you know the characteristics of your customers? How would you know if more number of women are shopping, or more men? Or if most of your customers are young or middle aged?

Maybe you would know which of your products sell the most, but you would have no clue about who is buying them. You would have no clue about the type of audience that you must target in order to get more sales. Can you imagine?

Okay don’t cringe. That’s not gonna happen if you own a brick-and-mortar store. But do you own a website? If yes, there’s no way you can ‘see’ your customers while they’re exploring or shopping at your online store. It’s just like knowing that a black figure has entered your website. And it’s only legit if this thought makes you cringe. But since I’m writing about Facebook Pixel, it surely is the superhero-coming-to-the-rescue here. It gives you digital eyes, just like RedBull gives you wings. And that’s just one of the many things it does for you.

Sure we have Google Analytics and other analytics tools which collect information about visitors, but dude, Facebook knows EVERYTHING about everyone. This Mr-know-it-all knows your cousin’s wedding anniversary, and your mother’s birthday.

And in order to put this information to use, Facebook created Facebook Pixel. Facebook Pixel is a small code that we place on our website, and its function is to collect data for a myriad of goals that we can accomplish later.

The most important thing a pixel does is, umm, everything it does seems important! But okay, I’d like to describe two of the most important ones. One, Remarketing. You must have noticed that Facebook shows you adverts about stuff that you already have been looking for. For example, if you recently explored some online stores for track pants, be sure to see some relevant suggestions on Facebook! That’s remarketing. Facebook records your browsing activity and shows you ads based on your interests. This is accomplished by advertisers with the help of Facebook Pixel.

Two, it allows you to build a lookalike audience of people who have similar interests and demographics to people who are already showing interest in your website. This means that you can target people who are similar to your current customers. It’s a great way to not only reach new people, but new potential customers.

Facebook Pixel also helps to track conversions and run effective ads. Again, so important!

Having made it clear that you must install a Facebook pixel to your website right away, let’s see how you can do it.

Implementation via Google Tag Manager

To install a Facebook Pixel into your website through Google Tag Manager, you need access to a Facebook Business Manager account and a Google Tag Manager account. The following steps will take you through the installation process.

  • Log into your Facebook account and switch to Business Manager.
  • Open the Business Manager Menu and click on Pixels.

  • Give a name to your pixel and create it.

  • Having created the pixel successfully, you  now need to install it to your website, for which we’re using Google Tag Manager here.
  • Click on Setup and you will now be able to see a pop-up like this. Choose the first option.

  • Select Google Tag Manager from the list of tools.

  • Another pop-up will present you with the following options.

  • You can go with either of them, depending upon your convenience. If you would like to install the code manually, you’d have to copy it, create a Custom HTML tag in your Google Tag Manager Dashboard, and then paste the code under the tag’s HTML. If you go with the Quick Install, a tag gets automatically created in your GTM account.
  • Choosing Quick Install presents you with further steps which are quick, easy and smooth. Finally, publish.

  • Now log into your Google Tag Manager account to verify that the tag has been created. You’ll be able to see a Base Pixel Code tag under the Tags tab.

That’s all! The pixel starts working in a few minutes. You can now start receiving insights and tracking the performance of your website, right at your Facebook Business Manager account.

How we can help

Without any technical intricacies, you can install a Facebook Pixel and start collecting valuable visitor data on Facebook as well as Google Tag Manager. The next step would be to make the most out of your pixel, by deploying it for the very effective marketing techniques like Remarketing, lookalike audience and conversion tracking. And that’s what we are here for. We are a crazy team of Google and Adobe Certified Analytics Experts who eat, breathe, sleep and dream Analytics. And we’ve made it our purpose and passion to electrify your business’s potential through Analytics.

Contact us here.

Found it informative? Leave a comment! You can also give us a thumbs up by sharing it with your community. Also did you know that you can light up our day by subscribing to our blog? Subscribe here –


What is Data Layer?

What is data layer?

Data layer is a JavaScript array (a data structure containing multiple elements) of a single object which contains data in key-value pairs. Eeeeeewwwwww. I feel criminal to sound so complex and technical! I take it back and we start afresh. Now before discussing what a data layer is, let’s see how and why it came into existence.

When it comes to running a website or an app, we all need some information about our users to enhance their experience at our website (or app). For this purpose, we use analytics and tag management tools, which collect this information in the form of actionable data.

While using a Tag Manager, this data is obtained directly from the HTML of a website, with the help of JavaScript. For example, when a user visits a website, HTML records his activities such as page views, button clicks, log in/out, purchases, downloads, etc. Do you realize that in order to collect data at so many points of action, we need to write separate JavaScript snippets for each?

That’s not the only bugbear here. What if the HTML of our website undergoes some changes? For example, let’s say the button ID of a button accidentally got altered by the developer. Lol what a stupid developer! But shit happens and to err is only human.

Now, thanks to this developer, we have a brand new button ID and our JavaScript snippet has no idea about it. What happens? It stops working! We’ll now have to make appropriate changes in our JavaScript to keep obtaining data from that button.

So, Problem Number 1 – Multiple JavaScript codes. Problem Number 2 – a constant sync must be maintained between the HTML and the JavaScript that accesses it.

The solution? Data Layer, duh.

To solve the problems mentioned above, some cool technical creatures came up with the concept of a Data Layer. It is a layer between the HTML and the Tag Management System (or any data collecting tool) which collects data from the HTML, and passes it to the Tag Management System or other data collection tools. It holds all the data we want to pass from our website to our linked applications.

In technical terms, HTML is called the Experience Layer and the Tag Manager resides at the Application Layer. So the flow of data is from Experience Layer to Data Layer to Application Layer.

To be honest, I also feel criminal to make a very important tool like data layer look like it’s nothing. Or am I cool? Cool or criminal? Maybe I’m angelic to help you understand it easily. O:)

Let’s keep it simple and see what data layer looks like in the real world. In implementation, data layer is a set of codes. Codes that hold data required by applications such as Tag Managers or Analytics tools. Requirements specified by the Analytics/Marketing team are converted into a JavaScript snippet by the developer, and this snippet is inserted into the website.

And what I took back in the start of this article, is what a data layer actually is. It is a JavaScript array of a single object which contains data in key-value pairs.

An array is a data structure containing multiple elements. To define, for example, an array named A, we follow either of the following syntaxes –

var A = new Array();
or
A = [];

Here ‘A’ is an empty array. So the JavaScript snippet to create an empty data layer would be –

datalayer = [];

So our data layer has been created. Here ‘datalayer’ is just a name. You can give any name to your data layer, even though there are some default names specified by different Tag Management Systems, and it’s recommended that you go with the defaults. Google Tag manager calls it dataLayer, Tagman uses tm_params, Tealium calls it utag_data and Qubit calls it universal_variable.

Inside the data layer, is a single object. And since we include objects within a pair of curly braces, this is how the structure of a data layer looks –

datalayer = [
{
}
];

Everything included within these curly braces forms a single object. Here is an example structure of a data layer.

How does a Data Layer help

I – Specific and refined data

A data layer only holds the data needed and specified by a business or an application. For this reason, it is also considered to be a refined list of business requirements.

II – Data layer speeds up the process of deployment of tags.

Now since data layer creates a direct passageway for data to flow from the website to the Tag Management System, without running multiple JavaScript snippets, the whole process becomes faster and smoother.

III – Data layer helps you get the most out of a Tag Management System

The Data layer is one of the key concepts in the world of Tag Managers. The tools work best when deployed using the data layer, as it ensures maximum flexibility, portability, and ease of implementation.

IV- Data layer allows the Analytics and Digital Marketing team to conveniently make changes on the website.

Since the mess of numerous JavaScript codes gets cleared, the constant dependency on developers for making changes to data tracking codes and resolving issues is greatly reduced. It also relieves the web developers equally, leaving them to get on with implementing new features and fixing bugs.

Best Practices in Data Layer’s Implementation

  • Business Objective Document

Writing down the requirements and objectives of an organisation is the first step in creating a data layer. This practice gives a vision and a clearer understanding of what information the data layer must collect and how.

  • Multiple Data Layers

Each team within an organisation has its own set of goals to achieve, which collectively help the organisation to achieve its basic goal. Since every goal requires distinct data, distinct data layers must be created. Each data layer will collect data that is specific to a particular goal. Hence, we recommend separate data layers for Analytics, Marketing and other tools.

  • Consistent Naming

Keep the names of your data layer and variables simple and readable. One way to do this is by using lowercase and underscores instead of camel casing. For example, use ‘page_id’ instead of ‘pageID’. The names must also be relevant and descriptive.

Example Data Layer

Suppose an online store comprising thousands of women’s bags, needs to know their most popular products. So the goal here – To find out the type of products being loved the most.

The ‘type’ here could be dark colored handbags under 1499 bucks, or luxury wallets that cost over 2999 bucks. Hence, our data layer must record some crucial attributes such as product category, price range, physical attributes, along with the product name of course.

A data layer for the same (holding some values) must look like –

datalayer = [
{
'product_name' : 'Black Fringed Wallet'
'product_category' : 'Wallets'
'color' : 'Black'
'price' : 899
}
];

Notice that the goal is fully met by making sure that only the data specific to the company’s requirements is collected. Insights formed on the basis of this data will help the company understand the preferences of its customers. If most of the visitors viewed bags which are dark colored backpacks priced between 1399 and 1899 bucks, the company can come to conclusion on what’s trending the most.

Also notice that the names of variables are simple and fully understandable.

Similarly, another data layer for the same company could track purchase-related data, in order to know which type of products are bought the most. Multiple data layers can be (and must be) created to achieve the various goals of the company.

How we can help

To sum up, data layer is a technical thing. And it is the key to get the most out of a Tag Management System. Even though you don’t need a lot of JavaScript knowledge to deploy tag management tools like Google Tag Manager, you definitely need it (or a JavaScript expert) to write a data layer. And that’s what we are here for. We are a crazy team of Google and Adobe Certified Analytics Experts who eat, breathe, sleep and dream Analytics. And we’ve made it our purpose and passion to electrify your business’s potential through Analytics.

Contact us here.

Found it informative? Leave a comment! You can also give us a thumbs up by sharing it with your community. Also did you know that you can light up our day by subscribing to our blog? Subscribe here –


What is Google Tag Manager?

What is Google Tag Manager?

Google Tag Manager is a problem-solver. It’s a lifeguard that has come to rescue anyone who is drowning in the ocean of tags (JavaScript snippets that send information to third party). Google Tag Manager, or GTM, is a super useful tool that simplifies the task of managing tags. Simplifies? I think GTM has made it the simplest ever!

With Google Tag Manager, you no longer need to hard-code JavaScript into each page of your website for collecting information about the behaviour of your visitors. Instead, you can now use Google Tag Manager’s interface to add, update or manage tags – mostly without writing JavaScript. You no longer need to chase your developer (who somehow happens to be the busiest person on the planet) for the task. With GTM in your hands, it’s all in your hands. Feeling powerful? Happy realization!

Apart from making you realize the power you now have, we are here to help you put GTM to work! Go ahead, click here to make a wish. #GenieVibes

Why you need Google Tag Manager

You need to upgrade

You need GTM because to stay ahead of the league, you need to say good-bye to the old practice. You need to upgrade. Without GTM, for performing tasks as simple as tracking the number of button clicks, to as complex as tracking scroll depth, or even making the tiniest changes to your already existing snippets, you had no choice but to seek a technically blessed creature.

GTM greatly reduces your dependency on a developer

GTM provides a handy, step-by-step interface which allows you to create and manage all your tags at one place. Without actually coding a snippet, you just follow some simple steps to create a tag and specify when and where it gets triggered. GTM handles the rest!

GTM reduces your expenses

A developer takes hours to write codes for the various tasks you want your website to perform. A GTM expert on the other hand, makes it possible in a much lesser time, which means you pay less for the same work.

GTM boosts your system’s speed and efficiency

To make advancements, you come up with changes to your existing system. You take decisions. And then? The most complex of all – Implementation. Those time-consuming implementations that take multiple steps to go live, can be centrally handled with Google Tag Manager.

With features such as debug, preview, security, integration with Google Analytics and many other Google products, there’s no end to what you can do – all at one place, efficiently.

Perks of Google Tag Manager

The list is huge, but to name a few,

  • Debug

After having created a tag, you can use this built-in error checking tool to make sure your tag works fine and smooth.

  • Preview

The preview mode gives the user a preview of the real-time performance and accuracy of a tag.

  • Security

You can set up a two-factor authentication that requires both your normal password and a numeric code that you receive over an sms, voice call, or mobile app. You can also manage permissions at different levels of the account.

  • DIY

You can Do It Yourself. By just inserting a container tag to your website, which is a one-time task, you can start creating tags, debug and preview them so as to have the whole idea of and control over what you’re doing!

  • Google Tag Manager +  Google Analytics

Even though both the tools can work independent of each other, when you team them up, they rock! Google Tag Manager simplifies the implementation of services provided by Google Analytics.

  • It’s free of cost

The tool, yes.

How we can help

Just in case it’s difficult for you to take out time and learn how to deploy Google Tag Manager and Google Analytics, we’re here! We are a crazy team of Google and Adobe Certified Analytics Experts who eat, breathe, sleep and dream Analytics. And we’ve made it our purpose and passion to electrify your business’s potential through Analytics.

Contact us here.

Found it informative? Leave a comment! You can also give us a thumbs up by sharing it with your community. Also did you know that you can light up our day by subscribing to our blog? Subscribe here –


Analytics with React-Redux SPAs and Google Tag Manager

React-Redux has become a hugely popular web development combo, but there aren’t too many guides out there on how to sprinkle in analytics. Most implementations require some modification to your app’s code, often with analytics specific business logic.

The most common pattern seems to be with redux middleware, which definitely is a step in the right direction. The redux-analytics package encompasses this pattern nicely. Every redux action becomes a place where insights can be extracted, simply by appending some analytics information to the action metadata.

const action = {
  type: 'MY_ACTION',
  meta: {
    analytics: {
      type: 'my-analytics-event',
      payload: {
        some: 'data',
        more: 'stuff'
      }
    }
  }
};

This is a great start, and I had many of these analytics payloads throughout the codebase for a while and it worked great. The problem was that whenever someone wanted to change pretty much anything, it required a redeployment. Plus you’ll often have less tech savvy users wanting to add their own insights.

We already had an integration with Google Tag Manager (gtm.js), so I was a little biased towards this implementation. This goes two-fold for other departments who were already familiar with gtm.js, which is currently reaping it’s benefits with less development overhead when adding analytics insights.

Anyway lets get started on a basic Redux integration with gtm.js and my personal analytics platform of choice — Mixpanel.


Getting Started

If you’re not already familiar with gtm.js, you can simply inject it’s javascript snippet into your app then get going. All of the configuration is driven through the gtm web UI, which has come a long way in the years.

Now on the app side, the Redux middleware approach is still the way to go here:

const analytics = () => next => action => {
  window.dataLayer = window.dataLayer || [];
  dataLayer.push({
    event: action.type,
    payload: action.payload
  });
  return next(action);
};
// Add in the analytics middleware
let store = createStore(
  todoApp,
  applyMiddleware(
    analytics,
    thunk,
  )
);

Instead of dispatching analytics events from the application, it’s now firing everything to the gtm.js dataLayer. Each dataLayer event needs an event attribute to denote the type of event, but other than that you can structure your data format in any way that suits your application.

Now that’s pretty much it for the initial setup, assuming you already have the gtm.js snippet embedded in your application somewhere. Everything else can now be driven by the Tag Manager UI. I’ve started storing tags/triggers/variables in their own respective folders, but these can be changed at any time.


Creating the first event

To get started, lets setup the beloved page load events that management always seems to want. A typical React SPA usually has some form of client-side routing, so there needs to be a method to track the initial page view (landing) and route transitions. To capture both of these, 2 triggers are required.

Create the trigger in some folder of your choice

First, create the tag for the page load. I used the window loaded trigger here, and named it Global.pageLoad for use later.

Create the first pageLoad event

Next, create the history change event, which will capture route transitions from your SPA router (e.g. react-router). This is similar to the Window Loadedevent above, but the History Change trigger can be selected instead.

Create a new tag Page View that triggers on either of these. I’ll be using Mixpanel throughout, but the same can apply to Google Analytics or your platform of choice.


Tracking authentication

The place where Mixpanel shines is tracking arbitrary events, with arbitrary (and sometimes changing) event attributes. This is the perfect behavior for a dynamic web application, and especially for the range of redux events that are fired.

In many applications, there’ll be some kind of authentication event fired. In my current app it’s structured as follows:

const authenticateAction = {
  type: 'AUTHENTICATE',
  payload: {
    user,
    token
  }
}

1. Create the trigger

This event is now available to use in Tag Manager as a custom event. Create a new trigger referencing this authenticate action:

The Event name should match the string type field in the redux action

2. Access the data

To access variables within your redux events, you need to create a Tag Manager variable for each primitive you want to access. Unfortunately there is no object dot notation access (yet).

Access the user id variable within the redux action

3. Send the analytics event

The complete authentication tag

Now that we have the trigger, and the data, we can send an analytics event. For user identity, this often varies per analytics-platform.

Create a new tag that uses the previous AUTHENTICATE event, along with the User.id variable. Inside a Custom HTML tag, the variable can be accessed using the {{VARIABLE}} notation.

Conclusion

That’s all there is to it to get started, now try login to your application and you’ll see the identification action get triggered and sent to your analytics. Now your analytics platform can grow as your application grows, without littering the code base with metadata tags.

It’s just as easy to add other actions and variables, and create triggers that fire conditionally based on the value of a variable — all within Tag Manager.

 Hope you liked this post.
You may subscribe to us for more good content for Free.
Best,

Non-Interaction Events in Google Analytics

So what are Non-Interaction Events in Google Analytics?

You already know about event tracking in Google Analytics and using it for everything from downloads to video plays. Maybe you’re using jQuery or Google Tag Manager to capture events.

One thing to note about events is that, by default, events affect the bounce rate. That is, if a user lands on a page and an event is triggered, they are not a bounce (even if they don’t view any subsequent pages). In many cases, that’s what you want: after all, if someone engages with the page in some way, you probably don’t want to count them as a bounce any more.

However, you have control over whether those events affect bounce rate. There’s a parameter you can send with the event data to decide this called the “non-interaction” parameter. In a case where a video auto-plays when someone lands on the page, for example, we might want to set the non-interaction parameter so that the bounce rate of that page isn’t zero.

Flagging Non-Interaction Events

The code for a non-interaction event is just a single parameter you set along with the event data.

For Classic GA:

For Universal Analytics:

Using Google Tag Manager:

Screen Shot 2014-05-05 at 8.14.21 AM

Effect on Metrics

Screen Shot 2014-05-01 at 1.03.19 PMNon-interaction events are mostly referenced in regard to bounce rate, but they actually affect several metrics. Setting the non-interaction parameter has the following effects:

  • Bounce rate and time metrics (session duration and time on page) are no longer affected by the event.
  • The number of total events, unique events, sessions, users, etc. are counted normally.

Give us a shout if you need any help with  Analytics by filling in the form below

Check out our Google Analytics solutions here

Check out our Adobe Analytics solutions here

FireBase Analytics Vs Google Analytics

Why FireBase Analytics ?

Because FireBase Analytics was created exclusively for apps.

There is a reason why a lot of app development companies invest on creating in-house analytical tools rather use vendor solutions.

Most digital analytical tools including Google Analytics were created in a “pre-mobile app” era. A majority still cater primarily to website architectures. Mobile applications differ greatly from websites. Websites are click based.

Other than forms where the text is typed, a click is supposed to change the page being viewed. Events like video view or document download are afterthoughts to the basic page based architecture. Apps, on the other hand, have several elements and types of interactions over one or multiple screens. Also, users can call various action by touching, swiping, pinch-in, pinch-out using multiple fingers in various ways. Users can thus interact with various elements that trigger content without changing the screen they are in.

There are many apps out there whose interface is just a single screen. The traditional page of websites does not exist. Also, Firebase analytics has solved a big question Google Analytics is still struggling How to uniquely identify a user who may access the page from multiple devices/browsers/time gaps? For mobile apps, there is no need to force yourself to the website language of Google Analytics.

Your analytics tool has to adapt to your business reality and not the other way around. Pure play app creators need a tool that understands users and events. Firebase Analytics is that solution.

Free unlimited event reporting in Firebase Analytics unlike Google Analytics

Another consequence of the page and session based tools like Google Analytics is that events are an afterthought for them. Thus there are limits to which one can go while analyzing events. Even paid solutions like Google Analytics premium have a limit on how many events you can report and analyze. Firebase, however, provides you with unlimited reporting for up to 500 distinct events.

Did we mention that Firebase is also free?

Funnel analysis makes much more sense in Firebase Analytics than in Google Analytics

The traditional page flow analysis involves analyzing sequence of pages visited in a session prior to the desired outcome. This is not useful. This is because visitors don’t “follow” the path that we want them to follow.

The correct way to analyze user behavior flow is to identify the critical actions taken at every step of the conversion process. Since Firebase is based on events and not on screen views, it allows you to create funnels based on events which give much more value than the page-view based funnels Google Analytics has.

You can connect Firebase Analytics to Google Analytics

Imagine tomorrow your organization decides to use websites in addition to the apps. Alternatively, let us say you still have stakeholders who understand only the language of Google Analytics. Firebase has a tight integration with Google Analytics. Connect your Firebase data to Google Analytics and see your Firebase analytics reports without leaving the Google Analytics user interface.

Unlike Google Analytics, Firebase Analytics is much more than an app analytics tool

Firstly, Firebase is a mobile and web application platform. Its original product was a real time database. Along with the famous Firebase Analytics, it also has services and infrastructure designed to help developers build high-quality apps.

Firebase features can be mix-and-matched by developers to fit their needs. After Firebase was acquired by Google in October 2014, it has expanded to become a full suite for app development with many Google products like Admob also integrated into it. You can take a look at what Firebase has apart from Analytics here. Firebase as a backend service is one of the fast growing businesses in the Android market.

Unlike Google Analytics, Audiences can be used through the rest of the Firebase Analytics platform

Firebase audiences are like segments in Google Analytics. Additionally, Firebase enables audience-specific push notifications and app configuration changes to be sent out without having to collate that information separately. You can identify custom audiences in the Firebase console based on device data, custom events, or user properties. These audiences can be used with any of the other Firebase features mentioned above.

By investing in Firebase, you will be investing in many more tools from Google that helps in app development and monetization. With the purchase of Fabricdeveloper platform from Twitter last month, Firebase has again come to the spotlight. Fabric’s reach of 580,000 developers will grow the user base of Firebase. If your digital strategy is app-driven, Firebase is the right analytics tool for you.

You might like this video on Firebase :

Give us a shout if you need any help with mobile App Analytics by filling in the form below

Check out our Google Analytics solutions here

Check out our Adobe Analytics solutions here

Bucket Testing

What Is Bucket Testing?

Bucket testing (sometimes referred to as A/B testing or split testing) is a term used to describe the method testing two versions of a website against one another to see which one performs better on specified key metrics (such as clicks, downloads or purchases).

There are at least two variations in each test, a Variation A and a Variation B. Metrics from each page variation are measured and visitors are randomly placed into respective ‘buckets’ where the data can be recorded and analyzed to determine which performs best.

Companies that market and sell products or services online rely on bucket testing to help them maximize revenue by optimizing their websites and landing pages for conversions.

How It Works: An Example

Let’s look at a hypothetical example. Each bucket test begins with a hypothesis that a certain variation on a landing page will perform better than the control. Say you have an existing landing page for a free nutrition eBook, Eat Raw Foods and Live Longer.

The button on the bottom of your landing page’s sign-up form says ‘Submit,’ but your hypothesis is that changing the text to ‘Get Your Free Copy’ will result in more form conversions. The existing page with the ‘Submit’ button is the control, or Variation A. The page with ‘Get Your Free Copy’ on the button is Variation B. The key metric you will measure is the percentage of visitors who fill out the form, or a form completion.

Because you have an ad campaign driving several thousand visitors a day to your landing page, it only takes a few days to get the results from your bucket test. It turns out that ‘Get Your Free Copy’ has a significantly higher click rate than ‘Submit,’ but the form completion rate is basically the same. Since the form completion rate is the key metric, you decide to try something different.

Bucket Tests & Conversion Optimization

Bucket testing plays a big role in conversion rate optimization. Running a bucket test allows you to test any hypothesis that can improve a page’s conversions. You can continue to try higher-converting button text for Eat Raw Foods and Live Longer or you can go on to test other hypotheses, such as bolder headline copy, more colorful imagery or arrows pointing to the sign-up button that will get more people to convert.

Companies spend millions of dollars to drive traffic to landing pages and websites that promote their product or service. With simple variations to page copy, imagery, and layouts, you can conduct a series of bucket tests to gather data and to iterate towards your highest-performing version of the page. You simply create variations of the page, changing one element at a time and measuring key metrics, then collect the results until reaching statistically significant results for each experiment.

Bucket testing can make a significant impact on conversions per page, resulting in revenue increases on your highest-trafficked pages.

Bucket testing can also help to eliminate subjective opinions as deciding factors in a page’s design or layout. The author of Eat Raw Foods and Live Longer may think that her photo will drive more customer demand – or she may insist on a rainbow palette of colors.

With bucket testing, there is no need for debate on what design or page elements will work best to convert a customer. The quantitative data will speak for itself, and drive the decision for you.

Tests should be prioritized to run on your most highly trafficked pages, since you may need hundreds or thousands of visitors to each variation to gather statistically significant data. The more traffic a page receives, the quicker you will be able to declare a winner.

Common Page Elements To Test:

  • Headlines and sub-headlines: varying the length, size, font and specific word combinations
  • Images: varying the number of images, placement, type of imagery (photography vs. illustration) and subject matter of imagery
  • Text: varying the number of words, style, font, size and placement
  • Call-to-action (CTA) buttons: varying common ones such as ‘Buy Now,’ ‘Sign Up,’ ‘Submit,’ ‘Get Started,’ or ‘Subscribe’ and varying sizes, colors and page placement
  • Logos of customers or third party sites: build credibility and convey trustworthiness (could include Better Business Bureau, TRUSTe or VeriSign logos as well as customer logos)

Give us a shout if you need any help with A/B testing by filling in the form below

Check out our Google Analytics solutions here

Check out our Adobe Analytics solutions here

Split Testing

Split Testing Simplified

Split testing (also referred to as A/B testing or multivariate testing) is a method of conducting controlled, randomized experiments with the goal of improving a website metric, such as clicks, form completions, or purchases. Incoming traffic to the website is distributed between the original (control) and the different variations without any of the visitors knowing that they are part of an experiment. The tester waits for a statistically significant difference in behavior to emerge. The results from each variation are compared to determine which version showed the greatest improvement.

This marketing methodology is frequently used to test changes to signup forms, registration pages, calls to action, or any other parts of a website where a measurable goal can be improved. For example, testing changes to an online checkout flow would help to determine what factors increase conversions from one page to the next and will lead to increased orders for the website owner.

Seemingly subjective choices about web design can be made objective using split testing, since the data collected from experiments will either support or undermine a hypothesis on which design will work best. Demonstrating ROI (return on investment) for a testing platform can be measured easily because tests are created with a quantifiable goal in mind.

Split testing results

Split testing tools allow for variations to be targeted at specific groups of visitors, delivering a more tailored and personalized experience. The web experience of these visitors is improved through testing, as indicated by the increased likelihood that they will complete a certain action on the site.

Within webpages, nearly every element can be changed for a split test. Marketers and web developers may try testing:

  • Visual elements: pictures, videos, and colors
  • Text: headlines, calls to action, and descriptions
  • Layout: arrangement and size of buttons, menus, and forms
  • Visitor flow: how a website user gets from point A to B

Some split testing best practices include:

  • Elimination: fewer page elements create less distractions from the conversion goal
  • Focus on the call to action: text resonates differently depending on the audience
  • Aim for the global maximum: test with the overarching goal of the website in mind, not the goals of individual pages
  • Provide symmetric and consistent experiences: make testing changes consistent throughout the visitor flow to improve conversions at every step of the process

Habitual testing for a website owner or business helps to build a culture of data-informed decision-making that takes into account audience preferences. Each click on a website is a data point from a potential customer. Conflicting opinions can be put to the test with split testing methodology, and the visitors to the website will inform the final decision on the “best” design.

Split testing Process

Split testing is equivalent to performing a controlled experiment, a methodology that can be applied to more than just web pages. The concept of split testing originated with direct mail and print advertising campaigns, which were tracked with a different phone number for each version. Currently, you can split test banner and text ads, television commercials, email subject lines, and web products.

Hope you liked the post.

Give us a shout if you need any help with A/B testing by filling in the form below

Check out our Google Analytics solutions here

Check out our Adobe Analytics solutions here

Google Tag Manager (GTM) for mobile apps

Google Tag Manager (GTM) for Mobile Apps was first announced in August this year and has some great implications for app developers.

Perhaps most notably, the product has the potential to overcome one of the most critical challenges in the business: pushing updates to the user base without having to publish a new version on the app marketplace.

Typically, from the moment an app is shipped it is frozen, and from that point onwards the developer can only make changes to how the app behaves if the user accepts an update. By shipping an app with GTM implemented, configurations and values may be continuously updated by publishing new container versions through the web-based GTM interface.

In this post, we will cover how to get started with GTM for mobile apps and how to implement Universal Analytics tags using the GTM SDK for Android. As a heads up, this will occasionally get pretty technical, however I believe it is important to understand the product from its fundamentals.

Initial Set Up

Before we get started, some initial configuration steps need to be completed. More detailed instructions on these are available in the Google Developers Getting Started guide, but in a nutshell they include:

  • Downloading and adding the GTM library to our app project
  • Ensuring our app can access the internet and the network state
  • Adding a Default container to our app project

We will hold back on that last part, adding a Default container, until we have created some basic tags and are ready to publish. We will revisit the Default container later in this post.

Create an App Container

We need to start off by creating a new container in Google Tag Manager and select Mobile Apps as the type. Typically, we will have one container for each app we manage, where the container name is descriptive of the app itself (e.g. “Scrabble App”). Take note of the container ID on top of the interface (in the format “GTM-XXXX”) as we will need it later in our implementation.

App container for mobile app

Opening a Container

Assuming we have completed the basic steps of adding the Google Tag Manager library to our project, the first thing we need to do before we start using its methods is to open our container.

Similarly to how we would load the GTM javascript on a webpage to access a container and its tags, in an app we need to open a container in some main app entry point before any tags can be executed or configuration values retrieved from GTM. Below is the easiest way of achieving this, as outlined on the Google Developers site:

ContainerOpener.openContainer(
        mTagManager,     // TagManager instance.
        GTM-XXXX”,       // Tag Manager Container ID.
        OpenType.PREFER_NON_DEFAULT,   // Prefer not to get the default container, but stale is OK.
        null,                    // Timeout period. Default is 2000ms.
        new ContainerOpener.Notifier() {       // Called when container loads.
          @Override
          public void containerAvailable(Container container) {
            // Handle assignment in callback to avoid blocking main thread.
            mContainer = container;
          }
        }
    );

Before we talk about what this code does, let’s hash out the different container types to avoid some confusion:

  • Container from network: Container with the most recent tags and configurations as currently published in the GTM interface
  • Saved container: Container saved locally on the device
  • Fresh vs. Stale container Saved container that is less vs. greater than 12 hours old
  • Default container: Container file with default configuration values manually added to the app project prior to shipping

We will talk more about the Default container later on. Back to the code. In this implementation, the ContainerOpener will return the first non-default container available. This means that we prefer to use a container from the network or a saved container, whichever is loaded first, because they are more likely to hold our most updated values. Even if the returned container is Stale it will be used, but an asynchronous network request is also made for a Fresh one. The timeout period, set as the default (2 seconds) above, specifies how long to wait before we abandon a request for a non-Default container and fall back on the Default container instead.

We may change the open type from PREFER_NON_DEFAULT to PREFER_FRESH, which means Google Tag Manager will try to retrieve a Fresh container either from the network or disk. The main difference is hence that a Stale container will not be used if we implement PREFER_FRESH unless no other container is available or the timeout period is exceeded. We may also adjust the timeout period for both PREFER_NON_DEFAULT and PREFER_FRESH, however we should think carefully about whether longer request times negatively affects the user experience before doing so.

Tag Example: Universal Analytics Tags

We have completed the initial set up and know how to access our Google Tag Manager container. Let’s go through a simple example of how to track App Views (screens) within our app using Universal Analytics tags.

Step 1: Push Values to the DataLayer Map

The DataLayer map is used to communicate runtime information from the app to GTM, in which we can set up rules based on key-value pairs pushed into the DataLayer. Users of GTM for websites will recognize the terminology. In our example, we want to push an event whenever a screen becomes visible to a user (In Android, the onStart method is suitable for this). Let’s give this event the value ‘screenVisible’. If we want to push several key-value pairs, we may utilize the mapOf() helper method as demonstrated below. In this case, since we will be tracking various screens, it makes sense to also push a value for the screen name.

public class ExampleActivity extends Activity {

  private static final String SCREEN_NAME = "example screen";
  private DataLayer mDataLayer;

  public void onStart() {
    super.onStart(); 
    mDataLayer = TagManager.getInstance(this).getDataLayer();
    mDataLayer.push(DataLayer.mapOf("event", "screenVisible",
                                                   "screenName", SCREEN_NAME));
  }
//..the rest of our activity code
}

We may then simply paste this code into every activity we want to track as a screen, replacing the SCREEN_NAME string value with the relevant name for each activity (“second screen”, “third screen”, etc.).

Note: the container must be open by the time we push values into the DataLayer or GTM will not be able to evaluate them.

Step 2: Set Up Macros In Google Tag Manager

Simply put, macros are the building blocks that tell GTM where to find certain types of information. Some macros come pre-defined in GTM, such as device language or screen resolution, but we may also create our own. First of all we want to create a Data Layer Variable macro called screenName: this is the name of the screen name value we pass along with the event as demonstrated above.

GTM will then be able to evaluate the screenName macro, which can consequently be used in our tags. If we have not done so already, we may also create a Constant String representing our Analytics property ID at this point. These macros are now at our disposal in all container tags.

Macros for Mobile Apps

Step 3: Configure an App View Tag

Let’s set up our Universal Analytics App View tag. Our configurations are visible in the screenshot below (note the use of our newly created macros). The screen name field value of the App View will be automatically populated and corresponds to what we push to the DataLayer as the value of the screenName macro. The gaProperty macro value specifies which Google Analytics property data should be sent to (by reusing it throughout our container, for every Universal Analytics tag, we can both save time and prevent some critical typos).

Tag Manager app view tag

Step 4: Configure a Firing Rule For Our Tag

Finally, we need to set up the conditions under which the tag should execute. Since we are pushing an event with the value “screenVisible” every time an activity becomes visible, this should be the condition under which our tag should fire, as demonstrated below.

Tag Manager firing rule

Step 5: Save and Publish

We can continue to create other tags at this point. It may be beneficial, for example, to create some Google Analytics Event tags to fire on certain interactions within our app. We should apply the same logic in these instances: We need to push various event values to the DataLayer as interactions occur, and then repeat the steps above to create the appropriate Universal Analytics tags. When we’re happy, all that’s left to do is to create a new version of the container and Publish.

Tag Manager version

As we ship our app with Google Tag Manager implemented, requests will be made to the GTM system to retrieve our tags and configuration values as we discussed earlier.

Hold on, there was one more thing: the Default container!

Default Containers

When we are finished with our initial Google Tag Manager implementation and feel happy with the tags we have created, we are almost ready to ship our app. One question should remain with us at this point: what do we do if our users are not connected to the internet and hence unable to retrieve our tags and configurations from the network? Enter the Default container.

Let’s back up a little bit. In the GTM world, tag creation, configuration, settings, etc. is primarily handled in the web-based GTM interface. The power of this is obvious: we no longer need to rely on our development teams to push code for every change we want to make. Instead, we make changes in the GTM interface, publish them, and our tags and values are updated accordingly for our user base. This of course relies on the ability of our websites or applications to reach the GTM servers so that the updates can take effect. Here things get a bit more tricky for mobile apps, which partly live offline, than for websites.

To ensure that at least some container version is always available to our app, we may add a container file holding our configuration values to the project. This can be a .json file or a binary file, the latter being the required type to evaluate macros at runtime through GTM rules. We may access the binary file of our container through the GTM user interface by going to the Versions section. Here, we should download the binary file for our latest published container version and add it to our project.

create tag manager version

The binary file should be put in a /assets/tagmanager folder and its filename should correspond to our container ID (the file must be located in this folder, and it must be named correctly with our container ID). At this point, we should have both the JAR file and the binary file added to our project as shown below.

Mobile app tag manager files

Once this is done, we are ready to ship the app with our Google Tag Manager implementation. As described earlier, Fresh containers will be requested continuously by the library. This ensures that, as we create new versions of our container and publish them in the web-based GTM interface, our user base will be updated accordingly. As a back-up, without any access to a container from either the network or disk, we still have the Default container stored in a binary file to fall back on.

Summary

Let’s summarize what we have done:

  1. After completing some initial configuration steps, we created a new app container in the web-based GTM interface
  2. We figured out how to open our container as users launch our app, choosing the most suitable opening type and timeout value (taking into consideration user experience and performance)
  3. We then implemented code to push an event to the Data Layer as various screens become visible to our users, setting up a Universal Analytics App View tag in GTM to fire every time this happens
  4. We downloaded the binary file of our container and added it to our app project to be used as a Default container
  5. Lastly, we created and published our container in GTM

We are now ready to ship our application with GTM implemented!

Closing Thoughts

Google Tag Manager for mobile apps can be an incredibly powerful tool. This basic example shows how to implement Universal Analytics using this system but barely scratches the surface of what is possible with highly configurable apps that are no longer frozen. Simply put, getting started with GTM for mobile apps today sets businesses up for success in the future, I recommend trying it out as soon as possible.

I would love to hear your thoughts around Google Tag Manager for mobile apps. What are your plans for (or how are you currently) using it?

Check out our Google Analytics solutions here

Check out our Adobe Analytics solutions here

Say Ola! by filling in the form below.

Adobe Analytics Configuration Variables

So, first of all what are Configuration Variables. Lets Google – SiteCatalyst Configration Variables

Webmetric.org  has provided a pretty exhaustive content. Much appreciated. Usually, there is just copy paste from SiteCatalyst PDFs. But, this one is helpful.

Another good content can be found at AnalyticCafe

So, one general understanding after skimming through the content is that the Configuration Variables are the fundamental setting for the Analytics JavaScritpt Library. In most cases you will not change them at a page level (Exceptions- Link tracking ). Secondly, they don’t directly collect data but rather affect data collection. You will not find a report for report suite IDs or currencies by default in SiteCatalyst.

Lets have a look at the list of Configuration Variable

  1. s.account
  2. currencyCode
  3. charSet
  4. trackDownloadLinks
  5. trackExternalLinks
  6. trackInlineStats
  7. linkDownloadFileTypes
  8. linkInternalFilters
  9. linkExternalFilters
  10. linkLeaveQueryString
  11. linkTrackVars
  12. linkTrackEvents
  13. cookieDomainPeriod
  14. fpCookieDomainPeriod
  15. doPlugins
  16. usePlugins
  17. dynamicAccountSelection
  18. dynamicAccountMatch
  19. dynamicAccountList

So, that brings the total to 19 configuration variables over which we have control.

Tomorrow I will tick them off one by one from this list.

Ok, Aug 21st – Time flies!

So, its 10.35 AM, I am back from gym and now its time for some Analytics Heavy lifting. I start my daily learning with some blogs. I alternately read Google Analytics and SiteCatalyst. Today its Google Analytics,

So lets see what Justin Cutroni has for us today.

I read Advanced Content Tracking with Universal Analytics. Go check it out. He has written a JavaScript to track events for how is content being read by readers on a site. Pretty Sweet and simple. I also need to learn how to write such codes.

Now, coming back to Configuration Variables –

1.s.account

The report suite is the most fundamental level of classification you apply on analytics data. Each report suite has a Unique ID. The s.account is nothing but a way tell Analytics data collection server about the Report suite to which the data is to be sent and we do that through the unique ID. Please keep in mind the report suite name is different from report suite ID. The scope of report suite name is only till your account and the scope of report suite ID expands till Adobe Data collection servers.

For a single suite tagging, here is an example –

s.account = “AwesomeAnalytics”

For multi suite tagging use a comma separator –

s.account = “AwesomeAnalytics,SuperAwesomeAnalytics”

Other things to keep in mind –

  • Each ID has a total length of only 40 bytes
  • Don’t use space while declaring the multiple IDs
  • Unique ID should contain only alphanumeric characters, the only exception being hyphen “-“

Well, that’s pretty much it about the s_account, lets look at the next variable – currencyCode

Now, this is one variable which should be ideally set in the s_code. Why I am saying this? Coz its non persistent, so you gotta send this information with every image request. Now, in most cases the currency of the website is kinda constant and even if it changes you can write a small code with certain if else statements and allot the currency accordingly. Thus, try declare in the s_code itself.

But, yes, why it is used. It is basically used to facilitate currency conversions. If you were not aware then SiteCatalyst offers a base currency for each report suite which can be different from the currency at which the item is sold on the website. Now, the currencies are different hence the revenue should also be different. That is we need something to facilitate conversions. currencyCode does just that. Example –

You are having a global website, but you have your head office at US. So, to track your performance you will prefer the reports in US dollars. But across the world you are not selling in dollars. So, lets suppose you are making sales in Japan. So, on the japanese website, you will set s.currencyCode = “YEN” and you can have the base currency of your report suite as Dollars. Now, SiteCatalyst will automatically convert the revenue from Yen to Dollars in your reports. That’s really sweet.

Few things to keep in mind –

There are certain currencies like Swedish Krona that don’t use period “.” but use comma “,” in there currency. But periods and commas have different meaning to SiteCatalyst. So, only use periods and not commas while feeding revenue data to any variable.

The default value for this is USD. If you require any conversion, you can simply ignore this

The debugger parameter is CC

Ok, the next one – charSet

This one is only to be used when you are going to feed in data to variables which is having non ASCII characters. Here is a link to the ASCII table – I AM ASCII TABLE.So, just cross check what you are feeding to the variables.

SiteCatalyst uses two character sets – UTF-8 and ISO-8859-1

This one plays a very crucial role for tagging international websites whose character set is beyond the standard ASCII characters.

The charSet declaration is used by Analytics servers to convert the incoming data in UTF-8

The value in s.charSet should match the value of charSet declared in Meta tag or http header.

As we know that the reports in SiteCatalyst can be populated in multiple languages. When we chose any non English language, then SiteCatalyst uses UTF-8 encoding.

Each Analytics variable has a defined length limit expressed in bytes.For standard report suites, each character is represented by a single byte; therefore, a variable with a limit of 100 bytes also has a limit of 100 characters. However, multi-byte report suites store data as UTF-8, which expresses each character with one to four bytes of data.This action effectively limits some variables to as little as 25 characters with languages such as Japanese and Chinese that commonly use between two and four bytes per character

The JS file must define the charSet variable . (All page views and traffic are assumed to be standard 7-bit ASCII unless otherwise specified.) Setting the charSet variable , tells the Analytics engine what language should be translated into UTF-8. Some language identifiers used in meta-tags or JavaScript variables do not match up with the Analytics conversion filter .

I will take ahead from here tomorrow.

Okay Aug, 22nd 11.17 Am

The only thing I believe that matters most to become successful is consistency.

First, time for some blog read. SiteCatalyst today.

I found this post by Adam Greco really Awesome –


http://adam.webanalyticsdemystified.com/2010/05/17/crm-integration-2-passing-crm-data-to-web-analytics/

Aug 24th, 6.30 PM, Sunday

I have been a bit pressed with time for the last two days. Actually was pressed only on Friday,

yesterday I did not do anything that productive except the gym. It was weekend so i could train

guilt free. By the time i left the gym last night, i was so tired i could sleep in the gym it self 😛

Anyway the next configuration variable – trackDownloadLinks

This is one is pretty simple and sweet. It does two things –

  1. As the name suggests, provides the provision to track download links
  2. Affects the clickMap data for the downloadable links

The implementation is pretty simple. Its value is either true or false –

s.trackDownloadLinks = true

I wonder why would anyone keep it false. So, if its set to true anytime someone clicks on a downloadable link, the data is sent to Analytics engine. What data? The name of the link and the click instance.

When its combined with the clickMap. The data will be shown along with the page on which the link was clicked. If you set this variable to false, clickMap data will be affected.

That’s pretty much it about this one. So, the next one – trackExternalLinks

I will not spend much time on it. Its pretty straight forward. If its set to true it tracks clicks on external links else it does not. All links whose domain does not match with the one you define in are external links. This one also affects the clickMap data.

So, the next – trackInlineStats

this one is important. Again this only has the value as either true or false. If it is set to true then only the clickMap data is recorded otherwise not. It populates the clickMap reports

Next – linkDownloadFileTypes

This one works in tandem with trackDownloadLinks. It is simply a comma separated list of extensions for various file types that exist on your site. If a particular extension is not part of this link, the corresponding downloadable file will not get tracked for Analytics.Thing to keep in mind is that Analytics can track only left clicks downloads and not the right click save as downloads, as left click is under the scope of browser and right click and save as is beyond the scope of browser and under the scope of operating system. Example –

s.linkDownloadFileTypes=”exe,zip,wav,mp3,mov,mpg,avi,wmv,doc,pdf,xls,xml”

Tomorrow I will start from linkInternalFilters

Ok, its August 25th, 10:30 AM

As usual I will start my day with some blog read. Google Analytics today. Here I come Mr. Cutroni

I read – http://cutroni.com/blog/2014/01/09/set-google-analytics-content-grouping/

Good as usual

Now, the next variable – linkInternalFilters

This variable is used in conjunction with trackExternalLinks. When we define linkInternalFilters we basically tell SiteCatalyst or the Analytics engine about what are the links or domains that we don’t want to be tracked as external links or in other words you are telling the Analytics engine that these are my internal links. So, you also need to specify the domain on which the ananlytics is getting implemented. Lets look at an example –

s.trackExternalLinks=true

s.linkInternalFilters=”javascript:,example.com,example1.com,exampleAffiliate.com”

In the above example i have told the Analytics engine that dude links to example.com, example1.com and exampleAffiliate.com should not be considered as external.

Again, notice this I am not using any spaces in the syntax.

Cool, lets move ahead – linkExternalFilters

This one is used when you are very particular about the exit links you want to track. In other words there are only certain exit links you want to track and not all exit links. So, using this configuration variable you provide that list of exit links to be tracked to the analytics engine. For example, I have many exit links on my site but I want to track only BadaBoom.com

s.trackExternalLinks=true //yep bro track ’em

s.linkInternalLinks=”javascript:,example.com”

s.linkExternalLinks=”BadaBoom.com”

Now, what we have done is that we have provided two filters to the Analytics engine. One tells what are my internal links. This will filter out all the links that I don’t consider my internal links. Next I put a filter around the external links for the links I want to be tracked. The rest of the external links won’t be displayed in the exit links report. If you don’t want the second filter simply leave it blank-

s.linkExternalFilter=””

Now, the next one – linkLeaveQueryString. By the way we are half way done 🙂

I find the name of this dude very complex – It says leave Query String, but if you set it to true, it does not leave query string. So, to deal with this one – tell it what you don’t want and it will give you what you want. Another thing all the configuration variables that have “link” in them will affect ummm.. yeah.. the link tracking. So, while tracking the links do you want to consider the Query String parameters or you don’t want? Just remember example.com and example.com?query=badaboom are essentially the same pages but when you set s.linkLeaveQueryString = true, this will track both links as separate and different. So, if you want only those links that lead to example.com irrespective of whether it was example.com?query=Badaboom or example.com?query=BadaBadaBoom set s.linkLeaveQueryString= false.

So, next one – linkTrackVars

This one is very very very important as any goof up with this will drastically affect your server calls and data being captured by other variables. So, lets dance.

This one is used to send data on exit, download and custom links. Its very dumb and freaks out it no instructions are given to it. You have to tell it what are the custom variables to which the data needs to be sent upon the click events. If you don’t tell it, its panics and resends data for all the variables who have a value at the time of a click to the analytics engine and hence duplicates the data for the other report causing erroneous inflation. So, never leave this one blank. I repeat never leave this one blank!

in the Analytics s_code define it as none –

s.linkTrackVars=none

Ideally, this should be recorded in the onClick events. example –

<a href=”index.html” onClick=”

var s=s_gi(‘rsid’);

s.linkTrackVars=’prop1,prop2,events’;

s.linkTrackEvents=’event1′;

s.prop1=’Custom Property of Link’;

s.events=’event1′;

s.tl(this,’o’,’Link Name’);

“>My Page

The above example i copied from the SiteCatalyst Implementation guide. In this example we are doing a custom link tracking.the var s = s_gi(‘rsid’) is providing the report suite Id which is rsid in this case.We want to send data to prop1, prop2 and event1 on click of this link

s.tl() is used for custom link tracking

Please take notice we don’t provide value to linkTrackVars as s.prop1 or s.prop2 or s.events.We simply write prop1,prop2,events. Again, no commas. For tracking events we use linkTrackEvents which I will be covering next.Ok, so tomorrow I will take from linkTrackEvents. I want to you to smile right now. May the rest of your day be super amazing. Cheers!

August 26th, 12:07 pm, yes got a bit delayed today. Was working up for my other project –

livAwesome, its a self-help project I am working upon. You can check that out.

Ok, lets start with a blog. SiteCatalyst today.

Nice, so the next vatiable – linkTrackEvents

So, whenever you are doing a custom tagging for a link, and on specific onClick events you want to fire apart from prop and eVar an event as well, linkTrackEvents is used over there. While defining this event you first need to include “events” notice the “s” in linkTrackVars and in the following statement specify the name of the event you will be using in linkTrackEvents.Again, you will not be specifying the values as s.event1 or s.event2, you will simply write event1,event2,event3….

The declaration of event in s.events=eventX is still required. Please refer the to the example above for better clarity.

Ok, now lets look at the next one – cookieDomainPeriod

Any mistakes with this one can screw up your data, particularly around the count of unique visitors. Let me explain what it does. The setting on this variable directly affects the acceptance/rejection and functionality between the browser and Analytics cookie.

If you find the understanding of this variable difficult then don’t take alot of load. Simply put the number of periods in your DOMAIN as the input to this variable. Put only the number of periods in Domain and NOT THE SUBDOMAIN.

By, default the value of this variable is 2.

If your domain is AwesomeAnalytics.com then the cookie domain period is 2 if it is AwesomeAnalytics.co.in then the cookie domain period is 3.

Now, if the page is having URL www.badaboom.AwesomeAnalytics.com then still the cookie domain period is 2 and not three because we are providing the name of domain and not the subdomain.

But, what happens if my cookieDomainPeriod is 2 but my domain has three periods. For

example, AwesomeAnalytics.co.in. In this case the s_code will attempt to set a cookie for co.in domain and not AwesomeAnalytics.co.in. Now, since co.in is not a valid domain, the browser will get pissed off and ask the s_code to bugger off and reject the cookies, this will terribly affect the count of unique visitors and functionality of many of the plugins.

Another example you have a subdomain badaboom.AwesomeAnalytics.com. Here the CookieDomainPeriod is 2 and you give the value three. The analytics will assume that the domain is badaboom.AwesomeAnalytics.com and not AwesomeAnalytics.com. Now, if you have another subdomain NotBadaBoom.AwesomeAnalytics.com. This will be separate

website altogether, so would be AwesomeAnalytics.com. So, this will affect the functionality of cookies and also in linkInternalFilters you have the name of your domain and not the subdomain, things will get screwed up.

One more thing – enter the values a string that is 2 is “2”

If its still not clear just set the value to number of periods in your domain please.

Now, next fpCookieDomainPeriod.

The fp stands for first party. This is used by Analytics to set up first party cookies OTHER

THAN visitor Id cookie (s_vi) that is it does not control s_vi. The visitor click map cookie -s_sq and cookie checker -s_cc, plus cookies set up by a few plugins like getValOnce are affected by this variable.

Again simply put the number of periods in your domain into this period.

Tomorrow, I will take it up from dPlugins. Cheers!

August 28th, if you did not notice, i did not blog yesterday, was really busy with some other work. Its been two days I have not been to gym.

Ok, so getting down to business – doPlugins

So you might be aware that there are various plugins that you can use to enhance the functionality of your Analytics implementation. To use plugins apart from adding the plugin code to the Appmeasurement.js library or the s_code, You need to configure three other variables –

usePlugins

doPlugins

s_doPlugins function

First, set s.usePlugins=true

second, define the s_doPlugins function third, feed to output of s_doPlugins function to s.doPlugins variable –

Example, we want to feed a default value to prop1 by using some plugin. Add this code to s_code –

usePlugins=true

function s_doPlugins(s){

s.prop1=”Plugin output”

}

s.doPlugins=s_doplugins

Just a piece of information – When visitor comes to your website, then the Javascript files get cached to the visitors browser. The Analytics is driven by that cached version only, till it gets updated. So, if you have made any updates in your Appmeasurement library or s_code and the change is not getting reflected that is because the visitor’s browser is using the cached version. This can happen to you also during testing. You might have made the correct update, but it won’t get reflected because your browser is not deploying the latest library. So, its a good practice to clear your cache before testing any updates.

September 3rd. Blogging after let me count – 5 days! I went home actually and post my return I have not been able to manage my time well. But, anyway the essence lies in moving forward.*Fingers popping*

Just three left – dynamicAccountSelection, dynamicAccountMatch and dynamicAccountList. All three are used in conjunction with each other. As their name suggests, they are used to dynamically select the report suite to which the data is to be sent.

Lets start with dynamicAccountSelectio. The input is just true or false. If want dynamic selection, simply set it to true.

Now, dynamicAccountList. In the syntax of dynamicAccountList we specify two things. One, the report suite Ids and two, the URLs.

We basically tell the Javascript to select particular report suite IDs based on the URL of the webpage. So, lets have a look at the syntax.

s.dynamicAccountList=”reportsuiteId1,reportsuiteId4=AwesomeAnalytics.com;reportsuiteId5,reportsuiteId3=BadaBoom.com”

Key characters to keep in mind here are comma, semi colon and equal to. Look at the way I have put them here. I so wish SiteCatalyst had been consistent with it. like for products, different product declarations are separated by comma and individual properties by semi colon. Here the case is opposite. So, keep these things in mind.

Now, dynamicAccountMatch. This is kinda complex for people who are not that geeky. So, you first enable dynamicAccountSelection, then you provide the criteria in the dynamicAccountList and then, you tell the Javascript where to implement this criteria, and this is done through dynamicAccountMatch.

The value you feed to dynamicAccountMatch are DOM objects on which you want to apply the criteria mentioned in dynamicAccountList. Following are the DOM objects to which you can apply dynamicAccountSelection –

window.locatio.host – to apply it to domain, this is also by default

window.location.pathname – to apply it to the path in the URL

( window.location.search?window.location.search:”?”) – to apply it on a Query string

window.location.host+window.location.pathname – Host name and Path

window.location.pathname+(window.location.search?window.location.search:”?”) – Path + Query String

window.location.href – Entire URL

Keep in mind dynamic Account selection is not supported by the latest Appmeasurement for Javascript.
And Voila! we are done! So, how many days it took me? 15 days! jeez. But, the point is this blog now exists in this world and we both learned something. Consistency matters.
Please give me a feedback if you have some time.
Till then, Happy Analytics!
Cheers!